气孔率对耐火浇注料的重要性
致密定形耐火制品体积密度应按国家标准GB/T2997—2000进行测定。定形隔热耐火制品体积密度应按国家标准GB/T2998—2001进行测定。致密耐火浇注料体积密度应按YB/T5200—1993进行测定。 气孔率是多数耐火材料的基本技术指标,它几乎影响耐火制品的所有性能,尤其是强度、热导率、抗侵蚀性、抗热震性等。一般来说,气孔率增大,强度降低,热导率降低,抗侵蚀性降低。 耐火浇注料是一种由粒状和粉状耐火物料按一定组成配料,外加一定量结合剂和水,经搅拌、振动浇注成型的不定形耐火材料,它广泛应用于冶金、玻璃、水泥、石化、能源等高温行业。耐火浇注料在成型、热处理过程中的脱水和烧结阶段都不可避免地会产生气孔。据统计,在致密耐火浇注料中,基质占浇注料总体积的25%,而气孔约占基质总体积的10%,可见,气孔是基质显微结构的重要组成部分。气孔结构参数包含了非常丰富的内容,如气孔率、气孔的形状与分布、气孔尺寸与孔径分布、气孔孔容等,它们都在很大程度上决定着耐火浇注料的力学和热学性能。在本文中,主要介绍了气孔率、气孔尺寸和孔径分布3项气孔结构参数对耐火浇注料强度、热导率、热膨胀系数、抗渣性和抗爆裂性等性能影响的研究进展。
1 气孔率和孔径分布对浇注料强度的影响
浇注料经高温热处理后,其基质与骨料间的结合将由先前结合剂提供的水化或凝聚结合转变为因烧结而形成的陶瓷结合,而陶瓷相材料的通性则是质脆和理论强度大,但因其内部存在杂质、气孔等多种缺陷而导致实际强度小很多。事实上,气孔不仅减小了承受负荷的面积,而且在气孔邻近区域产生应力集中,从而减弱了材料的负荷能力。
耐火浇注料的孔径指的是浇注料内部孔隙的名义直径,一般都有平均或等效的意义,其表征方式有最大孔径、平均孔径、孔径分布等。孔径分布是浇注料气孔结构参数中除气孔率之外的另一项重要内容。耐火浇注料的强度不仅受气孔率的影响,同时也受到气孔的大小和形状等因素的影响。
2 气孔率对耐火浇注料热导率的影响
耐火浇注料中气孔对热导率的影响较为复杂。当气孔率不大,气孔尺寸很小,又均匀分散在浇注料介质中时,可把气孔看作浇注料连续相中的分散相。因此,在温度不太高时,热导率λ可按复相材料热导率公式来计算。
3 气孔率对耐火浇注料热膨胀系数的影响
固体材料的热膨胀本质上可归结为点阵结构中质点间的平均距离随温度升高而增大的现象。由于在晶格振动中相邻质点间的作用力是非线性的,质点在其平衡位置两侧受力并不对称,温度越高,质点受力不对称的情况越显著,相邻质点间平均距离增加得越多,以致于晶胞参数增大,晶体膨胀。由于耐火浇注料热处理后为陶瓷相结合,因此,固体材料的热膨胀理论同样适用于它。影响材料热膨胀系数的因素有很多,如材料本身的化学矿物组成、晶体结构及晶型转换、键强度、微应力、外界温度、内部结构的紧密程度等,但其与气孔率之间相关关系的报道却并不多。已有的研究表明:气孔率对材料热膨胀性能的影响很大程度上取决于气孔在材料中的分布状态,而与气孔率的大小关系不大。
4 气孔率和气孔尺寸对耐火浇注料抗渣性能的影响
抗渣性能就是指耐火材料在高温下抵抗熔渣侵蚀和冲刷作用而不被破坏的能力,是衡量材料抗化学侵蚀和机械磨损的重要指标。熔渣对浇注料的侵蚀表现在对表面的溶解作用和对材料内部的渗透,而熔渣对浇注料的渗透会扩大反应面积和深度,使材料表面附近的组成和结构发生质变,形成溶解度高的变质层,导致损坏加速。故在浇注料材质相同的情况下,其基质显微结构成为其抗渣性能好坏的关键。郁国城和陈肇友指出,炉渣侵入耐火材料的途径有:毛细管通道、晶界、材料内部杂质形成的液相渠道网和晶格,而其中沿毛细管通道渗入是最为重要的。耐火浇注料中的开口气孔可视为毛细管,是熔渣侵入的通道。
浇注料的开口气孔率越高,熔渣侵入速度就越快,侵入比率与气孔率约成正比。在耐火浇注料中,基质部分的气孔占总气孔的大部分,因此基质比骨料容易被侵蚀,从而使骨料裸露,反应面积也增大,并逐渐脱离而被冲蚀,加速了熔损。
同时,即使浇注料的气孔率相同,但气孔的大小等不相同,其侵蚀速度也会发生变化。碱性耐火材料中的渣渗透受毛细管中的黏性流动支配。根据流体公式,直径在1μm以上的气孔就会引起渣浸透。因此,为了抑制渣在耐火材料基质中的渗透,其有效手段是尽可能地使材料维持细孔径水平。研究减少中间包渣在涂料中的渗透途径时,在涂料生产时尽量选取直径小的有机纤维来提高涂料的抗渗透性,同时在不增大涂料体积密度的前提下调整涂料的颗粒级配,尽量使涂料气孔微细化。
5 气孔率和气孔尺寸对浇注料抗爆裂性能的影响
数十年来,耐火浇注料的烘烤工艺一直是工业生产中受关注的一个问题。浇注料在烘烤中发生突发性脱落的主要原因是游离水在100℃沸腾,产生带压气体而未及时排出。如果浇注料的结构显示出低透气性,则蒸汽产生的速度比其从气孔释放出来的速度要快;当形成的压力超过结合剂所提供的极限强度时,就会导致浇注料的机械损坏。可见,透气性是影响浇注料干燥速度和加热过程中开裂灵敏度的一个主要参数。
提高浇注料透气性最成功的方法一直是在浇注料的组成中添加聚丙烯、聚合葡萄糖酐纤维素、偏阿拉明等有机纤维,通过纤维烧掉形成的通道为蒸汽释放提供较快且较短的途径。由于很难测定在升温脱水过程中浇注料的透气性能,因此,通常都以室温时测定的试验数据作参考。为获得更符合实际的水蒸气逸散机制,通过对氧化铝系、铝矾土系和黏土系耐火浇注料进行爆裂试验和干燥试验,采用涡流模型对浇注料的水蒸气散逸机制进行了微观分析,认为在实际浇注料中,大气孔之间是由小气孔连接起来的。 耐火浇注料从刚研发时仅用作某些定形炉衬的修补料到目前大面积替代定形制品而直接用于各种炉窑,其材质、结合系统和施工方式都发生了日新月异的变化。但这些都体现在其工艺技术的进步方面,而有关基质显微结构尤其是气孔结构参数对浇注料力学和热学性能影响的研究则仍处于落后阶段,具体体现在以下两方面:
(1)对基质微细化后气孔结构特征的研究不充分,大多局限于气孔率这一参数,尚未开展对其他气孔结构参数定量化表征的研究工作;
(2)缺少基质气孔结构对耐火浇注料物理性能影响的深入研究,尚未开展基质气孔结构参数与浇注料力学、热学性能相关性的定量研究。今后的工作有必要通过对耐火浇注料基质气孔结构进行定量化表征的途径来建立其与浇注料热学、力学性能的相关性,确定不同气孔结构参数对材料物理性能影响的敏感程度,从而对耐火浇注料中基质显微结构微细化的作用与意义有更理性的认识;另一方面,也可能为耐火浇注料基质结构的优化设计提供理论依据,这对推动耐火浇注料的技术进步具有重要意义。
下一篇: 烟囱浇注料产生裂缝的原因